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An experimental investigation of forced and free oscillations of liquid bridges 
positioned between two rods of equal diameter is presented. Both the resonance 
frequencies and damping rates for different aspect ratios of the bridge are reported. 
The damping rate data of the liquid bridges are obtained by high-speed videography 
and are the first ever reported. Resonance frequencies for the three modified Reynolds 
numbers of 14, 295 and 1654, and damping rates for the two modified Reynolds 
numbers of 14 and 295 are reported. These values of modified Reynolds numbers are 
generated by using ethylene glycol, distilled water, and mercury in small bridges. 
Gravitational effects are kept small by reducing the size of the capillary bridge. The 
internal flow fields of several bridges for different modified Reynolds numbers are 
described based on high-speed visualization. Experimental results show good 
agreement with results of linear and nonlinear theory. 

1. Introduction 
The stability and dynamics of liquid bridges have been of great interest in many 

natural and industrial processes. Fluid bridges are observed in flow through porous 
media (Melrose 1966; Zasadzinski et al. 1987) and particulates agglomeration (Chen, 
Tsamopoulos & Good 1992). More recently liquid bridges have been studied because 
they arise in applications related to materials processing on Earth or in a microgravity 
environment (Preiser, Schwabe & Scharmann 1983 ; Brown 1988). Single semi- 
conductor crystals of high purity are produced by melting a polycrystalline feed rod 
and then allowing it to solidfy into a pure crystal. The quality of the final crystal is 
intimately dependent on the temperature and concentration uniformity at the 
solid-liquid interface. Axial oscillation of the capillary bridge may be used to increase 
the degree of mixing inside it. One of the objectives of this work is to provide further 
understanding of the flow field inside an axially oscillating liquid bridge. To this end, 
visualization studies at the particle level are compared with theoretical predictions 
obtained by tracking Lagrangian particles inside the bridge. 

Another application of axially oscillating liquid bridges is in simultaneous 
measurement of viscosity and surface tension of molten metals and ceramic materials 
at high temperatures. At present, information on the properties of these materials is 
limited. At high temperatures most materials become contaminated through contact 
with the measuring apparatus. Therefore, conventional techniques cannot be used to 
measure their viscosity and surface tension. The levitated drop technique (Trinh, 
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Marston & Robey 1988) which avoids the contamination problem, has been developed 
for measuring the surface tension only. Nevertheless, it requires complicated 
instrumentation to position the liquid to be tested. The capillary bridge can provide an 
excellent alternative to such measurements. Tsamopoulos, Chen & Borker (1992) 
proposed the use of either the static liquid bridge shapes or their resonance frequencies 
in order to obtain the material surface tension (with and without the presence of 
gravity). Furthermore, either the resonance frequencies or the damping rates of free 
oscillating liquid bridges may be used to obtain the viscosity of the liquid. 

Although there are numerous reports on the stability of static liquid bridges, the 
number of studies on the stability and dynamics of oscillating bridges is limited. The 
pioneering work in this area was conducted by Plateau (1863), Young (1805), and 
Laplace (1 805). Later, Rayleigh (1 879, 1892) showed that a stationary liquid cylinder 
is neutrally stable to a shape disturbance that is infinitesimal in amplitude, sinusoidal 
in shape, and of wavelength equal to the circumference of the cylinder (Rayleigh limit). 
More recently, Mason (1970) reported experimental results on the dynamics of 
capillary bridges. In confirming Plateau’s analysis on the stability limit, he observed 
that it was possible to induce standing waves on capillary bridges by vibrating the 
upper solid surface. In a more systematic way, Fowle, Wang & Strong (1979) studied 
capillary bridges between two cylindrical rods when either one or both of them 
underwent rotation or when the lower one was vibrating vertically. They measured and 
reported the stability limits and oscillation frequencies of different liquid bridges. They 
kept the radius of the zone below 2.6 cm, in order to reduce gravitational effects while 
maintaining a bridge aspect ratio which is large enough for accurate measurements. 
The experimental data by Fowle et al. (1979) are the only data available on the 
resonance frequencies for ‘isolated’ liquid bridges. Meseguer (1983), and Rivas & 
Meseguer (1984) studied the dynamics of axisymmetric bridges immersed in another 
fluid of the same density. In this case, however, the motion of the liquid in the bridge 
is affected not only by the solid boundaries (upper and lower) but also by the motion 
of the outer fluid induced by the moving and deforming liquid/liquid interface. The 
same technique was applied by Sanz (1985) who used an outer immiscible liquid 
contained in a cylindrical vessel of radius four times larger than the bridge radius. He 
reported resonance frequencies and compared them with results from inviscid theory. 

More recently, Borkar & Tsamopoulos (1991), and Tsamopoulos et al. (1992), 
motivated by the possibility of deducing material properties from static shapes and 
dynamic characteristics of liquid bridges, studied their linearized dynamics. Borkar & 
Tsamopoulos (199 1) used a boundary-layer analysis which is applicable for large 
Reynolds numbers, whereas Tsamopoulos et al. (1992) solved the linearized 
Navier-Stokes equations for a wide range of Reynolds numbers. The nonlinear 
dynamics of stable bridges were examined by Chen & Tsamopoulos (1993, referred to 
herein as CT). Further discussion of the nonlinear analysis will be given in the 
following sections in conjunction with the experimental results. 

The objectives of this work are twofold: first, to provide data on both the resonance 
frequencies in forced oscillations and the damping rates in free oscillations for isolated 
bridges in air and under standard gravitational conditions ; and second, to investigate 
the flow fields inside the capillary bridges for various conditions. The experimental 
apparatus and procedures are described in 9 2. Measured resonance frequencies and 
damping rates along with comparison with predictions from linear and nonlinear 
theory are presented in 993 and 4, respectively. Observations and calculations of the 
internal flow field are given in 95.  Finally, conclusions are drawn in 96. 
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2. Experimental apparatus and technique 
The experiments are performed using the set-up shown in figure 1. This system 

consists of two metal rods aligned vertically. The bottom rod is fixed and the top one 
is oscillating. The capillary bridge is formed by injecting liquid (via a syringe) in the gap 
between the two rods. Controlled excitation of the liquid is achieved by using the 
solenoid of a 10 in. speaker mounted on top of the apparatus. All critical surfaces of 
the support structure are machined to ensure that the upper and lower liquid supports 
are parallel and axially aligned. A short wire stinger connecting the upper support rod 
and the speaker voice coil compensates for any misalignment between the two. The 
oscillating upper support rod is kept precisely aligned with the lower rod by securing 
it through a in. linear sleeve bearing. The system is isolated from high-frequency noise 
by using rubber pads to mount the speaker on the support structure, and a rubber mat 
separated the apparatus from the lab bench. 

Driving the speaker is a Hewlett Packard 6827A amplifier with a sinusoidal signal 
input from either a Hewlett Packard 8 11 1A function generator or a Data Translation 
DT2805 D/A board installed in an AT compatible personal computer. For the 
damping rate measurements the position of the upper rod as a function of the input 
signal must be known in order to stop this rod at a desired location. Since the driving 
system does not have a position feedback loop, the phase lag between the input signal 
and the upper rod location is needed (Bode phase plot). This phase lag is determined 
by a GenRad frequency analyser coupled to an accelerometer (Kistler model 
8616A500) connected directly to the rod. Once the phase lag data for the system are 
obtained a polynomial is used to approximate the rod position as a function of the 
input signal. This polynomial is then used in the computer driver program to relate the 
speaker input voltage to the position of the oscillating upper rod. The sinusoidal 
motion of the upper rod is verified for all the frequencies reported here. 

The volume of liquid in the bridge is approximated by that of a cylinder with radius 
equal to that of the rod tip and length equal to the separation of the rods before 
excitation. The length is measured using a vernier height gauge and verified 
photographically with a reference scale. The radius of both rods for all of our 
experiments is 0.096 cm. The diameter and length of the bridges are selected in order 
to reduce the bulging induced by gravity while keeping the bridge size and excitation 
frequencies within limits of available equipment. Because of the relatively high vapour 
pressure of distilled water, significant mass losses could occur during the course of the 
experiments. To avoid this the vapour pressure of the liquid around the bridge is 
increased by placing a pool of distilled water directly below the liquid column. The 
same is done with ethylene glycol. Liquids in the columns are frequently changed 
(generally just before each experiment) to reduce contamination problems, and they 
are monitored for losses due to evaporation. The ethylene glycol and water bridges are 
supported using a set of aluminium rods. Both liquids wet the two rods well and 
seemed to adhere to their edges. No motion of the three-phase contact line was detected 
even at a 70-fold magnification. 

The mercury bridge required its own copper support rods with a mercury/copper 
amalgam on the contact surface. To form the amalgam the surface contamination on 
the copper is removed by immersing it in a pool of hydrochloric acid. Near the bottom 
of the pool is a puddle of mercury which is used to produce an amalgam with the 
copper rod as the two are brought to contact. To isolate the desired mercury/copper 
interface and keep the mercury from creeping down (or up) the sides of the rods, the 
vertical surfaces of the rods are coated with wax. Nevertheless, the wax seal is not 
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FIGURE 1. Schematic (not to scale) of the experimental arrangement. (1) Personal computer with 
DT2805 digital-to-analog board, (2) power amplifier, (3) function generator, (4) fibre-optic cable for 
strobe light source. ( 5 )  strobe light source (triggered by the high-speed video), (6)  high-speed video 

~ -- 
tape drivi and CPU,-(7) monitor, (8) mechanically linked speak&/&iver, (9) location of liquid bridge, 
(10) cup with liquid to prevent excessive evaporation, (11) high speed camera. 

perfect and the mercury bridges are more prone to distortions very close to the three- 
phase contact lines. 

The frequency and damping rate data are obtained by a high-speed video camera 
(EktaPro 1000 manufactured by Kodak). This system is capable of recording up to 
1000 full frame pictures per second using a 240 by 192 sensor array (pixels) video 
camera. Since the image is digitized the liquid surface position can be determined to 
within the pixel resolution. The exposure times are limited to 11 ps by using a strobe 
light. The high-speed video camera is used both for the frequency and damping 
rate measurements. The high-speed visualization is essential for the damping rate 
measurements since time-resolved recording of the bridge surface amplitude is needed. 
The internal flow field of the bridge is recorded using a conventional 35 mm camera, 
which has a better resolution than the high-speed video camera. In these experiments 
liquid columns are seeded with aluminium oxide powder and are illuminated using two 
5 mW He-Ne lasers positioned at close to a 90" angle with respect to the camera. 

3. Resonance frequency of liquid bridges 
Resonance frequencies of the first and second modes of liquid bridges with different 

aspect ratios are obtained using three different fluids, namely water, ethylene glycol, 
and mercury. The physical properties of these liquids are listed in table 1. After the 
Iinnirlc are inipcterl in the cnace hetween the rnrlc the iinner ciinnnrtino rnrl ic hrniinht "yu'u" U I W  'I'J'WLWU 111 C I I W  v y u v w  V IL . .V" l l  C l l W  '"U") C l l W  uyy"L "UyyV'Clllb I"* I" V L " U b " C  

into sinusoidal oscillation with an amplitude 2 at or near the first resonance frequency 
of each bridge via the solenoid of the driving speaker. In order to find the resonance 
frequency, the linear eigenfrequencies are used to obtain the approximate starting 
values. Linear eigenfrequencies are calculated by Tsamopoulos et al. (1992) as a 
function of bridge geometry characterized by the aspect ratio, the modified Reynolds 
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FIGURE 2. Water column showing segmented EktaPro image for A = 0.371, B = 0.339. The bridge is 
excited (a) below its first mode resonance frequency, a = 465 rads/s and (b) at first mode resonance 
frequency B = 478 rads/s. 

Liquid &m/cm3) 74dyneslcm) tc(gmlcm s) 
Ethylene glycol 1.1 48.2 16.2 x 10-2 
Water 1 .o 72.0 0.89 x 
Water1 1 .o 72.6 1 .oo x 10-2 
Mercury 13.63 484 1.53 x 

lValues used by Fowle et al. (1979). 

TABLE 1. Physical properties of ethylene glycol, water, and mercury at temperature of 25 "C 

number, and the Bond number. The aspect ratio is defined as A = R/L, where R and 
E are the bridge radius and length, respectively. The modified Reynolds number is 
defined as Re = (pyR)i/,u, where p and ,u are the liquid density and viscosity, 
respectively, and y is the surface tension of each liquid/gas system. The gravitational 
Bond number is defined as B = p g E / y ,  where g is the gravitational acceleration. 
Variables with overbars indicate dimensional quantities. 

The actual resonance frequency is then determined to within a 2-3 Hz by adjusting 
the output frequency from either the D/A board or the function generator until the 
amplitude of the radial deflection of the liquid bridge reaches a maximum. The 
function generator is used when only the frequency data, and not the damping rates, 
are of interest. In order to experimentally determine the resonance frequencies, 
oscillating bridges are viewed live on the video monitor while operating at 1000 frames 
per second. Typical images, observed on the video monitor, of the oscillating water 
bridges at slightly off resonance and at resonance frequencies for first and second 
modes are shown in figures 2 and 3, respectively. The ripple pattern on the edges of the 
column are due to the particular way in which the video camera displays and records 
images. 

As noted earlier, the sensor array of the EktaPro has 240 columns and 192 rows of 
photo capacitive cells that convert light focused by the lenses into measurable electrical 
charges. The charge that is stored by each cell is picked up once per frame by a 
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FIGURE 3. Water column showing segmented EktaPro image for A = 0.378, B = 0.332. The bridge is 
excited (a) above its second mode resonance frequency, is = 1301 rads/s and (b) at its second mode 
resonance frequency, = 1232 rads/s. 

scanning process which takes the charge from each cell in the array one after another. 
Since each scanning cycle must read 46080 pixels (240 x 192) before starting again, 
scanning the sensor one pixel after another limits the framing rate to about 60 frames 
per second. To achieve a frame rate of 1000 frames per second it is necessary to scan 
the array 16 times faster. The EktaPro achieves this speed increase by scanning sixteen 
consecutive rows of pixels simultaneously. Each group of these 16 simultaneously read 
rows is called a block and there are 12 blocks to a frame. In this manner 1000 frames 
per second can be sent to the recording tape drive and to a memory buffer. The buffer 
is read by the graphics card and displayed on the monitor at a rate of once every $ s. 
The graphics card reads the first row of each of the blocks in the data buffer and then 
allows the data buffer to be rewritten by the camera before reading the second row in 
each of the blocks. In the time it takes for the graphics board to read one line in each 
block, the camera has twice had a frame worth of data available to rewrite the buffer. 
Since significant fluid motion has occurred within each data buffer rewrite, the image 
displayed on the monitor shows the apparent discontinuities seen in figures 2 and 3 .  
The advantage of determining the resonance frequency from these fragmented images 
is that for forcing frequencies greater than 30 Hz the radial amplitudes for the entire 
bridge for at least one complete cycle are seen in each frame. An additional benefit is 
that the damping experiment may be performed immediately following this rapid 
visual determination of the resonance frequency by toggling the camera into record 
mode and initiating the column stopping sequence. 

Tables 2 and 3 show the results for the first and second mode frequencies, 
respectively, under various conditions. The dimensionless forcing amplitude is defined 
as CL = x/R. Since the characteristic time of the flow in the bridge may be related to 
the fluid properties, the forcing frequency, a, is made dimensionless as 

The results by Fowle et al. (1979) for water are also included in these tables for 
comparison. Data on amplitude of excitation are not reported by these authors. 

In order to relate the accuracy of the frequency measurements, Aa,  to that of the 
viscosity predictions, Ap, the following relation is used: A a  = (yARe Au) / (R  Re2Ap).  

u = r3(pP/y)i. (3.1) 
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Liquid 
Ethylene 
Glycol 
(Re = 14) 

Mercury 
(Re = 1654) 
Water' 
(Re = 295) 

Water2# 
(Re = 219) 

Water3# 
(Re = 304) 

L(mm) A X(mm) 
1.10 0.873 0.013 
1.43 0.674 0.025 
1.70 0.565 0.063 
2.05 0.468 0.063 
2.10 0.457 0.038 
2.17 0.442 0.096 
2.27 0.423 0.092 
2.34 0.410 0.125 
2.36 0.407 0.105 
2.47 0.389 0.115 
2.60 0.369 0.105 
2.62 0.366 0.149 
2.71 0.354 0.125 
2.73 0.352 0.155 
2.83 0.339 0.115 
2.88 0.333 0.165 
2.99 0.321 0.185 
3.15 0.305 0.225 
1.93 0.503 0.042 
2.44 0.398 0.050 
1.25 0.768 0.03 
1.45 0.662 0.05 
1.78 0.539 0.02 
1.78 0.539 0.02 
1.81 0.530 0.02 
1.89 0.508 0.02 
2.05 0.468 0.03 
2.17 0.442 0.03 
2.35 0.409 0.06 
2.48 0.387 0.06 
2.62 0.366 0.05 
2.63 0.365 0.04 
2.85 0.337 0.11 
3.16 0.304 0.10 
3.50 0.274 0.04 
3.73 0.257 0.18 
1.12 0.592 - 

1.53 0.430 - 
2.10 0.314 - 
2.31 0.286 - 

1.30 0.974 - 

1.67 0.764 - 

CL X / L  B is(rads/s) Ex LT 
0.013 0.012 0.236 
0.026 0.017 0.306 
0.065 0.037 0.365 
0.065 0.031 0.440 
0.039 0.018 0.451 
0.100 0.044 0.467 
0.096 0.041 0.487 
0.130 0.053 0.502 
0.109 0.044 0.506 
0.120 0.047 0.530 
0.109 0.040 0.558 
0.155 0.057 0.563 
0.130 0.046 0.581 
0.161 0.057 0.586 
0.120 0.041 0.607 
0.172 0.057 0.618 
0.193 0.062 0.641 
0.234 0.071 0.677 
0.044 0.022 0.517 
0.052 0.020 0.654 
0.026 0.020 0.164 
0.052 0.034 0.190 
0.021 0.011 0.233 
0.021 0.011 0.233 
0.021 0.011 0.237 
0.021 0.011 0.247 
0.031 0.015 0.268 
0.031 0.014 0.284 
0.063 0.026 0.308 
0.063 0.024 0.325 
0.052 0.019 0.343 
0.042 0.015 0.343 
0.115 0.039 0.372 
0.104 0.032 0.413 
0.042 0.011 0.458 
0.188 0.021 0.488 

- 0.100 
- 0.136 
- 0.187 
- 0.206 
- 0.223 
- 0.286 

- 
- 
- 
- 

- 
- 

1508 
1068 
754 
47 1 
440 
496 
452 
427 
42 1 
415 
371 
327 
346 
352 
320 
3 14 
283 
214 
534 
37 1 

1678 
1118 
930 
898 
81 1 
842 
741 
666 
597 
440 
484 
484 
383 
314 
25 1 
232 

1693 
1054 
612 
474 

1601 
1167 

6.78 - 

4.80 - 

3.39 - 
2.12 - 

1.98 - 

2.21 - 

2.03 - 

1.91 - 
1.88 2.131 
1.85 - 

1.66 - 

1.47 1.717 
1.55 - 

1.59 - 

1.43 - 

1.41 - 
1.27 - 
0.96 - 

2.71 - 
1.88 - 

5.88 - 

3.92 - 
3.26 3.677 

2.84 3.564 
3.15 - 

2.95 - 
2.60 - 
2.32 - 

2.10 - 
1.54 1.871 
1.70 1.688 
1.70 1.685 
1.34 - 
1.10 - 

0.88 - 

0.82 0.661 
3.37 - 
2.10 - 
1.22 - 

0.943 - 

8.50 - 
6.20 - 

TABLE 2. Bridge geometry, excitation amplitude, fluid parameters and corresponding resonance 
frequency of the first mode. Dimensionless experimental (Ex) and theoretical values according to 
linear (LT) from Tsamopoulos et al. (1992) and nonlinear theory (NT) from CT are also shown. 
R = 0.96 mm for ethylene glycol and mercury, whereas for water superscripts 1, 2 and 3 indicate 
R = 0.96, 0.66, and 1.27 mm respectively, and # indicates data from Fowle et al. (1979). 
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Liquid 
Water' 
(Re = 295) 

Water2# 
(Re = 219) 
Water3# 
(Re = 304) 
Water4+ 
(Re = 424) 

E(mm) A A(mm) a J / L  B o(rads/s) u 
* * - 1.25 0.768 0.163 3537 12.40 

1.40 0.686 * * - 0.183 2739 9.61 
1.53 0.630 0.199 2463 8.64 
1.68 0.573 0.219 2199 7.71 
1.70 0.565 0.222 2004 7.03 
1.80 0.533 0.235 1791 6.28 
1.95 0.492 0.025 0.026 0.013 0.255 1571 5.51 
2.05 0.468 0.075 0.078 0.037 0.268 1602 5.62 
2.15 0.447 0.281 1407 4.93 
2.20 0.436 0.025 0.026 0.011 0.288 1407 4.93 
2.28 0.422 0.297 1445 5.07 
2.30 0.417 0.301 1326 4.65 
2.40 0.400 0.025 0.026 0.010 0.314 1294 4.54 
2.55 0.376 0.050 0.052 0.020 0.333 1018 3.57 
2.75 0.349 0.075 0.078 0.027 0.360 911 3.19 
2.95 0.325 0.100 0.104 0.034 0.386 829 2.91 
3.18 0.302 0.075 0.078 0.024 0.415 741 2.60 
3.23 0.298 0.075 0.078 0.023 0.422 704 2.47 
3.45 0.278 0.100 0.104 0.029 0.451 597 2.10 
4.13 0.233 0.150 0.156 0.036 0.539 434 1.52 
2.10 0.314 - - - 0.187 1503 2.99 
2.65 0.249 - - - 0.236 948 1.89 

1.91 0.665 - - - 0.328 1854 9.85 
- - - 0.441 1135 6.03 2.57 0.494 

3.17 0.783 - - - 1.060 849 12.31 
3.57 0.694 - - - 1.196 767 11.12 

* * - 

* * - 

* * - 

* * - 

* * - 

* * - 

* * - 

* Below measurement tolerance, 3 < 0.025 mm or a < 0.026. 

TABLE 3. Bridge geometry, excitation amplitude, fluid parameters and corresponding resonance 
frequencies of the second mode. (Superscripts 1,2, 3 and 4 indicate R = 0.96,0.66, 1.27, and 2.48 mm 
respectively and # indicates data from Fowle et al. (1979). 

This equation is derived by relating the change in frequency to the change in the 
modified Re, ARe, assuming that other parameters remain constant. Using the 
calculated data of CT (table 2 of CT) for low Re (Re < 50), it can be obtained that 
approximately 20 rads/s precision is needed to provide a 1 CP precision in determining 
the viscosity. Higher accuracy in frequency measurements is needed for higher-Re 
liquids. The precision of the frequency measurements in the present experiments 
(Re = 14,295, and 1654) is about 20 rads/s (z 3 Hz) for frequencies below 900 rads/s 
and increases to a maximum of 40 rads/s at higher frequencies. This indicates that the 
measurement technique presented here is of sufficient accuracy for low-Re liquids to 
resolve 1 cP variation in viscosity. 

Resonance frequencies for five Reynolds numbers and for both the first and second 
modes are plotted in figure 4. For comparison the linear theory of Tsamopoulos et al. 
(1992) is used to calculate first and second mode excitation frequencies for bridges at 
Reynolds numbers of 10 and 500. The predicted values are connected by solid (Re = 
500) or dashed (Re = 10) lines to form continuous curves. The results show that the 
resonance frequencies increase with the aspect ratio. The weak dependence on 
Reynolds number seen in the linear prediction is on the order of the scatter and in the 
scale of this plot cannot be detected. As noted above however, the data for ethylene 
glycol are measured with sufficient accuracy, and when amplitude effects are accounted 
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0 0.3 0.6 0.9 1.2 

Aspect ratio 
FIGURE 4. Resonance frequency for ethylene glycol, water, and mercury. Symbols indicate results for 
water (m, 0, A, V) with Re = 219, 295, 304, and 424, ethylene glycol (V) with Re = 14, and 
mercury (0) with Re = 1654. The lines indicate theoretical results based on linear theory for Re = 
500 (solid line) and Re = 10 (dashed line). Filled symbols are data from Fowle et al. (1979). 

for they match predictions from the nonlinear theory. This is further discussed below. 
In general, data of the first mode fall an average of 19% below the linear prediction. 
Resonance frequencies for the longer (lower aspect ratio) bridges tend to approach the 
theoretical values. This can be explained by noting that the volume displacement 
relative to the total bridge volume, for the same excitation amplitude, is larger for the 
shorter bridges than the longer ones. Therefore, in shorter bridges, which also have 
higher resonance frequencies, relatively stronger convective fields are established. The 
enhanced convective fields increase the viscous damping, and reduce the resonance 
frequency relative to that predicted by the linear theory where convective terms are 
neglected altogether. Data for the first mode for A > 0.5 fall an average of 22 % below 
the linear prediction while data for 0.4 < A < 0.5 and A < 0.4 fall 18% and 16% 
below the predicted values, respectively. This trend is not seen for bridges excited at the 
resonance frequency of the second mode where the data remain consistently 21% 
below the linear prediction. 

Results from the nonlinear calculations according to CT are also compared to two 
of the experiments with ethylene glycol bridges as shown in table 2. Very briefly, for 
these nonlinear calculations the Navier-Stokes equations are solved numerically for an 
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Forcing frequency 
FIGURE 5. Response of normalized overall amplitude, A,, to different forcing frequencies for two 
different experiments with ethylene glycol, Re = 14. Conditions are a = 0.155, A = 0.366, B = 0.563 
(A, nonlinear or linear analysis); a = 0.109, A = 0.407, B = 0.506 (0, nonlinear or -...-, linear 
analysis). Filled symbols indicate resonant frequencies and dashed vertical lines indicate the 
corresponding linear eigenfrequencies. The experimentally determined frequencies are indicated by 
the short solid lines. 

oscillating liquid bridge. Galerkin/finite-element methodology is used for discretization 
in space and implicit finite differences for discretization in time. Calculations could 
only be carried out for ethylene glycol which has Re = 14. For other fluids tested here, 
which have Re > 100, the oscillatory boundary layer that arises at the solid/liquid 
interfaces, the internal layers, and complicated flow recirculation patterns require a 
much finer finite-element mesh for their accurate resolution. This makes the 
computational time needed to carry out these extensive calculations prohibitively large. 
In these calculations the overall amplitude is defined by 

where 1 + G(t) is the time-varying distance of the upper rod from the lower one made 
dimensionless by L, andf(z,t) is the distance of the side surface from the axis of 
symmetry of the bridge made dimensionless by R. In order to obtain the resonance 
frequency theoretically, A ,  normalized by a is plotted versus forcing frequency after a 
steady oscillating motion is established (CT). Figure 5 shows such a plot for two 
different aspect ratios for ethylene glycol (Re = 14). The maximum of each curve (filled 
symbols) indicates theoretical nonlinear resonance conditions while the short solid 
vertical lines show the measured resonance frequencies of the corresponding 
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FIGURE 6. Resonance frequency for ethylene glycol as a function of aspect ratio. Symbols indicate 
experimental results (V), results from nonlinear theory (a), and results from linear theory (+). 
Linear theoretical results are connected with a continuous curve. 

experimental liquid bridges. The linear eigenfrequencies are indicated in figure 5 by the 
dashed vertical lines. The experimental points fall in between the linear and nonlinear 
predictions and their deviation from the nonlinear prediction is much smaller than that 
from the linear prediction (less than 3%,  which is within the uncertainty of the 
measurement). Clearly, there is a pronounced improvement in the prediction of the 
experimental results using the nonlinear theory. 

Figure 6 and table 2 show experimental values of resonance frequencies for ethylene 
glycol along with the predicted values from linear theory (Tsamopoulos et al. 1992) as 
a function of aspect ratio. The nonlinear calculations for the two data points reported 
above are also shown. The scatter in the experimental points is due to both 
experimental uncertainty and their dependence on the forcing amplitude, which varies 
from point to point (see table 2). It should be noted that longer bridges (smaller A )  than 
those shown could not be sustained due to the stability limit when B =!= 0, whereas 
shorter ones (larger A )  required such large forcing frequencies and exhibited such fast 
damping that accurate measurements of damping rates exceeded the limitations of 
available equipment. 

4. Damping rates of liquid bridges 
In order to obtain damping rates of liquid bridges for various conditions the liquid 

column is first brought into resonance and is run for a few hundred forced oscillations 
so that all initial transients are dissipated. Then the top rod is suddenly stopped at the 
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FIGURE 7. Evolution of the shifted point amplitude, [A,( t ) -AA,( t , ) ] /a ,  at a position 75% of the 
column height for an ethylene glycol bridge in free oscillation after resonance was achieved. 
Conditions are Re = 14, a = 0.193, A = 0.321, and B = 0.642. 

top of the stroke and the motion of the liquid is continuously recorded at 1000 frames 
per second until all oscillations are damped out. The damping rate data are later 
extracted from frame-by-frame examination of the recorded images of the liquid 
surface amplitude. Disturbances of the column during switching from forced to free 
oscillations are eliminated by stopping the top rod at its maximum distance from the 
bottom one where the forcing velocity is zero. An instantaneous transition from forced 
to free oscillation is possible at this point by replacing the sinusoidal excitation with an 
appropriate DC voltage. The D/A board is programmed to stop outputting a sine 
function at a keyboard command and replace it with a constant voltage of suitable 
magnitude to hold the rod at the maximum height generated by the preceding sine 
wave. After the command is given to hold the voltage, the D/A board waits until the 
rod is at its maximum height before switching to constant voltage. 

The surface deflection amplitude, A,, which is defined by (3.2), is approximated by 
the deflection amplitude of a single point on the surface (designated A p ) .  Therefore, the 
damping information is deduced from the recorded images by following the motion of 
a selected point on the surface of the bridge. For most experiments in the first mode, 
deflections of the free surface of the bridge are close to a maximum at three-quarters 
of the column height from the bottom boundary. Therefore, this point was chosen to 
facilitate more accurate measurements of the amplitude from still frames. By recording 
the location of this point at the extremes of its motion and the corresponding frame 
number, which is directly related to elapsed time, the rate of damping of the freely 
oscillating bridge is determined. The presence of gravity distorts the shape of even 
static bridges. This is accounted for in fitting the experimental damping data to an 
exponential function of the following form : 

In this expression, Ap is the oscillation amplitude in mm during damping of the 
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FIGURE 8. Evolution of the maxima of point amplitude, A,, for ethylene glycol and water bridges in 
free oscillation after resonance is achieved: (a) ethylene glycol bridge with exponential fit to first two 
maxima, Re = 14, a = 0.193, and A = 0.321; (b) water bridge with exponential fit to all points by 
applying linear regression to log of equation (4.1), Re = 295, a = 0.063, and A = 0.409. 

examined point at any time (0, at the first time it is achieved (t;), and after motion has 
ceased (t,); rq is the dimensional damping rate in l / s  which may be made 
dimensionless with respect to either the fluid properties, or the forcing frequency is, i.e. 

Figure 7 shows the variation in time (made dimensionless by the forcing frequency is) 
of the shifted point amplitude, [A,(t)  - A,(fm)]/a, made dimensionless by the bridge 
radius and normalized by a = 0.193 for ethylene glycol with A = 0.321 and B = 0.641. 
It can be readily seen that the motion rapidly damps out and only 3 4  maxima can be 
sufficiently differentiated from the shifted final value of A,. This is the reason why it 
was necessary to use such large amplitudes for these experiments, see table 2. The 
maximum positive values of the shifted amplitude are plotted in figures 8 (a)  and 8 (b) 
for typical ethylene glycol and water bridges, respectively. For the ethylene glycol 
bridges the exponential is fit through the first two points since these experience the 
largest displacement amplitudes and are therefore most accurately read. Similarly, the 
nonlinear calculation of CT, used the first two maxima of A,  to calculate crD. As 
discussed in CT the range of variation of the damping rate is bounded by the initial 
maximum value and the results from linear analysis. However, the maximum value is 
taken as a characteristic of the finite-amplitude oscillation. 

This approach is not possible for the water bridges which have higher Re. The initial 
peak-to-peak deflection of the water bridge is approximately the same as that recorded 
for the highest surface amplitude in the bridges of ethylene glycol (z 7 pixels). 
However, because the water bridges require many more cycles to damp out, and due 
to the limited pixel resolution of the EktaPro, the amplitudes for two or more 
consecutive pictures appear the same, as shown in figure 8(b). Since it is not meaningful 
to use the first two points to determine the damping rate in these bridges, the average 
damping rate is calculated by a least-squares fit of the logarithm of (4.1) using all the 
data (solid line in figure 8b). 

Experimental damping rates as a function of aspect ratio, for water and ethylene 
glycol, are given in table 4 and plotted in figure 9. Motion of less intensity and fewer 
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measurable A, maxima of the ethylene glycol column, coupled with the limited 
resolution of the camera, lead to large uncertainties in amplitude measurement. The 
error bars shown in figure 9 are calculated based on errors due to pixel resolution 
during data collection. Data with uncertainties greater than AcrD = 0.2 have not been 
plotted. As expected the damping rates for lower-Re bridge of ethylene glycol (Re = 
14) is larger than that of water bridges with Re = 295. Also, the rate of increase in 
damping rate with aspect ratio is higher for ethylene glycol than water bridges. There 
is a clear distinction between the data for the two fluids, making measurements of 
damping rates more effective than measurements of resonance frequencies for the 
determination of the fluid viscosity. 

In order to compare the theoretical calculations with the experimental data the 
nonlinear calculations reported by CT are modified to accurately simulate the 
experimental procedure. As mentioned above, in switching from forced to free 
oscillations it was necessary to stop the upper rod when it was located at the uppermost 
point of its oscillatory trajectory. Clearly, this would modify the bridge geometry at 
final equilibrium. This procedure, however, has the advantage that the motion of the 
liquid prior to switching to free oscillations is well known. This is in contrast to the 
situation with the motion stopping at the original location in which case the phase in 
the oscillation cycle must be recorded since it affects the damping rate when gravity is 
present (see CT). Nevertheles, predictions reported in CT assume that the upper rod 
returns to its original location before its motion stops. According to those calculations 
nonlinear damping rates should be significantly higher than the corresponding linear 
ones. In order to properly compare experimental results and nonlinear theory, finite- 
element calculations are repeated with the upper rod stopping at its point of maximum 
separation after steady oscillations have been achieved. Surprisingly, these modified 
nonlinear calculations from ethylene glycol result in nonlinear damping rates that can 
be well approximated by their corresponding linear values (see table 4). It is expected 
therefore that nonlinear data on damping rates will be generally less dependent on the 
amplitude of oscillation than nonlinear data for resonance frequencies. 

The calculated values for selected ethylene glycol bridges (Re = 14) based on the 
above-mentioned modification of the nonlinear analysis of CT are shown in figure 9 by 
the filled symbols. For comparison the linear calculations following the method of 
Tsamopoulos et al. (1992) are also given in table 4 and are plotted as solid curves in 
figure 9. The dashed lines are best fit curves to the experimental data and are calculated 
using a linear regression technique. It may be observed that experimental values for 
water fall slightly above the theoretical ones, whereas the ethylene glycol data are 
scattered above and below the linear prediction. 

Furthermore, the earlier conjecture that the dependence of the damping rate on 
amplitude will be weaker is indeed observed. This justifies the utilization of a linear 
regression technique to fit curves through the experimental data irrespective of values 
of a. The slopes of these lines are approximately 25 YO greater (22 YO for ethylene glycol 
and 26 O h  for water) than the corresponding curves calculated using the linear theory. 
The growing deviation between the experimental data and the linear prediction as the 
bridge length decreases is due to the increased significance of inertia as the relative 
excitation amplitude becomes larger. This increases the energy dissipation rate of the 
bridge resulting in the larger damping coefficient. A similar effect was noted in $ 3  for 
bridges in forced oscillation. The two damping coefficients calculated using the 
nonlinear theory of CT also predict a higher damping rate than the linear calculation. 
These calculated points fall within the uncertainty of the corresponding experimental 
data. 
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f f D  

Water 
(Re = 295) 

Liquid B 
Ethylene 0.467 
Glycol 0.487 
(Re = 14) 0.506 

0.502 
0.530 
0.558 
0.563 
0.581 
0.586 
0.607 
0.618 
0.641 
0.233 
0.233 
0.237 
0.247 
0.268 
0.284 
0.308 
0.325 
0.343 
0.343 
0.372 
0.413 
0.458 
0.488 

A 
0.442 
0.423 
0.407 
0.410 
0.389 
0.369 
0.366 
0.354 
0.352 
0.339 
0.333 
0.321 
0.539 
0.539 
0.530 
0.508 
0.468 
0.442 
0.409 
0.387 
0.366 
0.365 
0.337 
0.304 
0.274 
0.257 

d 

0.100 
0.096 
0.109 
0.130 
0.120 
0.109 
0.155 
0.130 
0.161 
0.120 
0.172 
0.193 
0.021 
0.021 
0.021 
0.021 
0.031 
0.031 
0.063 
0.063 
0.052 
0.042 
0.115 
0.104 
0.042 
0.188 

5, 
48 
50 
54 
43 
47 
36 
27 
32 
28 
36 
23 
29 
14 
16 
22 
16 
16 
13 
9 
7 
8 
9 

10 
8 
7 
5 

Ex 
0.208 
0.240 
0.309 
0.242 
0.173 
0.177 
0.091 
0.161 
0.235 
0.187 
0.105 
0.136 
0.052 
0.054 
0.083 
0.059 
0.047 
0.050 
0.032 
0.020 
0.029 
0.030 
0.039 
0.031 
0.022 
0.018 

LT 
- 

- 
0.234 
- 
- 
- 

0.183 
- 
- 

- 
- 
- 

0.029 

0.028 
- 

- 
- 
- 

- 
0.01 1 
0.009 
0.009 
- 
- 

- 

-0.004 
TABLE 4. Damping rates of ethylene glycol (Re = 14) and water (Re = 295) bridges calculated 
according to linear (LT) (Tsamopoulos et al. 1992) and nonlinear theory (NT), see CT and 
experimentally measured (Ex) 

Experimental values for damping rates may also be compared with those from linear 
theory by referring to table 4. It is interesting to note that linear theory for the water 
bridge at A = 0.257 predicts that the damping rate is very slightly negative, i.e. the 
bridge is unstable, whereas the bridge was observed experimentally and the damping 
rate was found to be positive. Apparently, the nonlinear flow field in the bridge 
modifies its stability characteristics. This requires further investigation of the bridge 
dynamics close to breakup conditions. Finally, the damping rates of a bridge of 
mercury with A = 0.398 and 0.503 are found to be much higher than expected and are 
not shown in figure 9. The larger values for the damping rate of the mercury bridge are 
suspected to be due to the different wetting conditions on the solid/liquid interface by 
the mercury. Upon further review of the video tape with experiments using mercury it 
is found that the bridge in the area around the three-phase contact lines seem to deform 
and move slightly. In other instances non-axisymmetric shapes are observed. Both are 
important deviations from the assumed conditions of axisymmetric shapes pinned at 
the edges of the rods and both lead to significantly higher damping rates, see 
Tsamopoulos et al. (1992) and Borkar & Tsamopoulos (1991). 
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FIGURE 9. Damping coefficients for ethylene glycol (Re = 14) and water (Re = 295). Symbols indicate 
experimental results for ethylene glycol (V), water (O), and nonlinear calculations (CT) for ethylene 
glycol (0)  bridges. Results from linear theory for Re = 14 and Re = 295 (+) are connected to form 
continuous solid curves. The dashed lines result from a linear regression fit to the measured data. 

5. Internal flow field 
The flow field inside the liquid bridge during forced oscillation of the upper rod is 

investigated by introducing an aluminium oxide powder as a tracer. The fluid motion 
is observed by illuminating the zone using two 5 mW He-Ne lasers and observing the 
light scattered from the particles. Aluminium oxide powder is used because its micron- 
sized particles provide long settling times and good 90" light scattering. The 
axisymmetry of the bridge is verified by backlighting the column with a strobe light 
which is synchronized with its motion (see figure 10). Conventional still photography 
at 15-fold magnification is employed during the entire flow visualization study. The 
camera is set up so that the axis of symmetry of the bridge lies on the focal plane of 
the lense. Short exposure times as low as & s are used to capture the small-scale particle 
motion, and longer exposure times of 1 s are employed to capture the global fluid 
motion. At 1 s exposure times, for the forcing frequencies of 50-150 Hz discussed here, 
50-150 oscillation cycles are captured in each photograph. 

In the larger 1 s exposure times of figures 11 and 12, the particles are seen to follow 
either a single or double toroidal path. The cut of the tori at the focal plane appears 
to be circular for shorter bridges, but becomes more elongated as the aspect ratio is 
decreased. The photographs do not have a good contrast at the side boundaries of the 
bridges due to both continuous deformation of the liquid surface at high speeds and 
the laser light reflection by the bridge surface. 
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FIGURE 10. Water column excited at 578 rad/s seeded with aluminium oxide, and illuminated with 
laser light for particle scatter and backlit with synchronized strobe light to show mode shape. 

FIGURE 11. Ethylene glycol column seeded with aluminium oxide and illuminated with an He-Ne 
laser. Conditions are = 622 rad/s, Re = 14, A = 0.441, B = 0.462, and a = 0.09. Exposure time 
was t s. 

Figure 13 is a schematic presentation of the single and double toroidal flow patterns 
showing the direction of the particle motion. At low Reynolds numbers the liquid 
circulates throughout the bridge forming the single toroidal structure seen in figure 11. 
On average, fluid is moving upwards around the bridge centreline and downwards on 
its free surface. This type of flow results in relatively homogeneous fluid properties 
throughout the length of the bridge and more effective mass and energy transport 
between the upper and lower support boundaries. If the excitation amplitude is 
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FIGURE 12. Liquid column seeded with aluminium oxide and illuminated with an He-Ne laser. (a) 
Ethylene glycol/water mixture (17 %/83 % by volume) excited at its first mode resonance frequency, 
W = 622 rad/s, Re = 94, A = 0.482, B = 0.354. (b) Water column excited at its first mode resonance 
frequency, (7 = 898 rad/s, Re = 295, A = 0.572, B = 0.220. Exposure time for all photographs 
was 1 s. 

FIGURE 13. Sketch showing the flow pattern and direction of seeded bridges for (a) low Reynolds 
number (Re x 14) and (b) high Reynolds number (Re z 295). 

decreased, the particles near the lower stationary support lose energy faster than the 
rest of the fluid and stagnate, while the particles closer to the excitation boundary 
continue their toroidal trajectories. 

The genesis of the single toroidal flow structures seen in bridges with a low Reynolds 
number can be deduced from the instantaneous Eulerian velocity vector plots 
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presented in figure 8 of CT. These plots are based on the nonlinear analysis presented 
in that paper for a bridge with Re = 30, A = l /n ,  and a: = 0.2. One complete cycle of 
the oscillation at fn intervals is shown for a liquid bridge which is forced at its nonlinear 
resonance frequency of the first mode, which is u = 1.117. 

There is an approximately :n phase lag between the motion of the upper boundary 
and the fluid motion in figure 8 of CT (see t = 1.571-3.610, and t = 4.712-6.283). This 
phase lag results in an outward average motion over the course of a cycle near the 
upper boundary of the bridge, and a downward flow on the bridge surface as predicted 
at t = 2.121-3.142. Over the course of many cycles these two dominant velocity fields 
generate the upward central flow and downward surface flow forming the global 
recirculation patterns sketched in figure 13 (a).  

In liquids with low modified Reynolds number, overfilling the bridge so that its static 
shape has a continuous bulge throughout does not disrupt the flow pattern with a 
single torus. However, as the static bridge shape approaches that of a sphere, rotational 
modes, made chaotic by surface instabilities of the bridge, rapidly evolve and dominate 
the flow. The single toroidal structure is unchanged by underfilling the bridge or by 
changes in excitation amplitude. Furthermore, it is found that an increase in the 
excitation amplitude results in a significant increase of particle velocity. Again no 
change in the flow pattern is observed. 

In fluids with a higher Reynolds number double toroidal structures are observed as 
shown in figure 12. The formation of these structures can be explained based on the 
previously mentioned phase lag between the motion of the excitation boundary and 
that of the viscous fluid in the bridge. This phase lag results in the generation of two 
distinct toroidal flow fields moving in opposite directions, one in the upper part of the 
bridge and one in the lower part. There must be a characteristic Re for which the upper 
toroid becomes observable. As Re increases, the upper toroid increases in size and 
continuously displaces the lower (original) toroid downwards. In fluids with lower 
Reynolds number the upper toroid does not have enough energy to displace the 
original one and it is damped out, and only a single toroid is observed. However, as 
the Reynolds number is increased this new circulatory flow is not completely dissipated 
over the course of the cycle and the flow near the upper surface forms a small counter- 
rotating toroid. Figure 12(a) shows a double toroidal structure for a column at Re = 
94. In order to obtain intermediate values of Reynolds numbers, mixtures of water and 
ethylene glycol are used. The mixture properties are obtained using the relations given 
in Reid, Prausnitz & Shenvood (1977). As the dissipation is further reduced at the 
higher Reynolds numbers the upper toroid grows until the upper and lower structures 
are of the same size, as recorded in figure 12(b) for Re = 295. Although these bridges 
with lower viscosity generate higher fluid circulation velocities for a given excitation 
amplitude, the upper and lower flow fields are isolated, leading to a slower transport 
of properties between the upper and lower domains. 

In contrast to the single toroidal flow pattern, the fluid volume and excitation 
amplitude affect the structure in the bridges with double toroidal structures. In this case 
overfilling results in an interaction between the upper and lower toroid and earlier 
formation of three-dimensional flow patterns. Reducing the excitation amplitude 
results in a slight increase in the size of the upper toroid relative to the lower one. 

In addition to the global toroidal structures, each particle is seen to follow another 
oscillatory motion at smaller scale. In oscillating liquid bridges, nearly standing 
(almost fully reflecting) waves are generated at resonance frequency. As the frequency 
deviates further from resonance the wave increasingly turns into a progressive one. In 
the latter case the small-scale motion follows an elliptical path, whereas in the nearly 
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FIGURE 14. Liquid bridges seeded with aluminium oxide powder and illuminated with an H e N e  
laser. Bridges are excited off their first mode resonance frequencies to show small-scale elliptical 
motion of seed particles. (a) Ethylene glycol is = 364 rad/s, Re = 14, A = 0.344, B = 0.597 and 
exposure time of = 295 rad/s, Re = 295, A = 0.313, B = 0.402; and (c) water 
is = 502 rad/s, Re = 295, A = 0.389, B = 0.323 with exposure times of 4 s. 

standing waves each small-scale elliptical path tends to collapse onto a line. This 
motion is similar to that observed by Ruellan & Wallet (1950) and derived by Stoker 
(1957) assuming an irrotational flow of an inviscid and incompressible fluid for small 
amplitude and partially or fully reflecting waves. 

In order to observe the small-scale motion, liquid bridges are excited at frequencies 
off resonance. Figure 14(a) is a short-exposure photograph which shows the small- 
scale elliptical trajectories. Since Re is relatively small a single toroid prevails in the 
large-scale motion. The photographs of figures 14(b) and 14(c) are at longer exposure 
times and show the superposition of these elliptical trajectories and the formation of 
the large-scale toroidal structure. Two toroids are clearly seen in figure 14(c) since Re 

s. (b)  Water 
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is relatively high. Note, that the axial symmetry of the bridge reduces the radial motion 
near the centreline resulting in flatter ellipses. Figure 14(b) shows wider ellipses than 
those in figure 14(c) owing to its larger deviation from the corresponding resonance 
frequency. 

A better description of the experimentally observed particle trajectories is provided 
by recasting the calculations by CT from the Eulerian to a Lagrangian reference frame 
of individual fluid elements at low Re. For a given bridge geometry and fluid 
properties, Eulerian calculations proceed as in CT until a steady oscillatory motion is 
reached, i.e. all initial transients dissipate. Subsequently, the velocity field and bridge 
geometry are stored for a complete period of the upper rod oscillation. A number of 
fluid elements is chosen and their motion is followed for several periods of oscillation. 
Owing to its periodicity the entire velocity field need not be recalculated when a period 
is completed. This results in large savings of computation time. For convenience, the 
fluid elements chosen are initially located at nodes of the finite-element mesh in the 
mapped domain (see CT). Their mapped coordinates ( T ~ ,  &) and the known interface 
shapef(t;,, t )  are used to recover the radial, r,, and axial, zi, locations in physical space 
using the inverse mapping, 

zi = & ( I +  G(t)) ,  ( 5 . 1 )  
ri = ~ i f ( t i ,  t) .  (5.2) 

Using the Eulerian velocity field and the time step, At, the position of the particles is 
updated by the following explicit scheme : 

z , ( t+At)  = z,(t)+a;Aw,At, ( 5 . 3 )  
r,(t + At) = ri(t) + aui At, (5.4) 

where wi and ui are the dimensionless axial and radial velocities, respectively. The 
dimensionless amplitude of the motion, a, and the aspect ratio, A ,  arise in (5 .3)  and 
(5.4) because velocities are made dimensionless in CT by Aa, time by l/s, and the 
radial and axial coordinates by R and L, respectively. 

In order to find the velocity of the same particle at its new position (z , ( t+At) ,  
r,(t + At)), the element in which it is now located must be identified. To this end, first 
( 5 . 1 )  and (5.2) are solved for &(t+At) ,  and y,( t+At) .  Subsequently, velocities are 
calculated by the finite-element definition 

9 

u,(t+At) = C $&(t+At), yz ( t+At) )u j ( t+At) ,  

wi(t +At)  = C $j(&(t + At), qi(t+ At)) w,(t + At). 

( 5  * 5 )  

(5.6) 

j=1 

9 

j=1 

This procedure is repeated for the next time step and for up to 50 periods of oscillation 
of the upper rod. Figure 15 shows fluid element trajectories in the physical domain for 
large-amplitude oscillation (a  = 0.2) near resonance of a viscous liquid (Re = 20) and 
in the absence of gravity. The starting point of each trajectory is indicated by a black 
dot. Only one half of the plane passing through the axis of symmetry is shown. The 
other half is symmetric with respect to the axis of symmetry at r = 0. During their 
motion particles are occasionally seen to exceed the vertical line at r = 1 or the 
horizontal line at z = 1. This is understandable since the bridge domain also exceeds 
these limits during motion. 

Figure 15(a-d) shows the trajectories of four fluid elements initially located in the 
middle and upper parts of the bridge. The microscale cyclical motion of these particles 
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FIGURE 15. Trajectories of fluid elements initially at the point indicated by the black dot, for 
A = 1/x, a = 0.2, Re = 20, B = 0, and v = 1.15. 
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and their macroscale toroidal motion may be readily observed. It was also found, but 
not shown here, that particles initially located on the axis of symmetry remain there 
and undergo an oscillation in the vertical direction only. Figure 15 (e) is an expanded 
view of trajectories of four particles initially located close to the bottom of the bridge. 
In contrast to the trajectories of particles above, the microscale motion now looks more 
like an ellipse with large ratio of its two axes and the macroscale motion will require 
longer time in order to form the lower region of the toroid. This sharp difference and 
asymmetry should be expected since it was already found in Eulerian calculations with 
Re = 20 that the energy introduced by the vibrating upper rod dissipates significantly 
before it reaches the bottom of the bridge. The results calculated above concur with the 
experimental observations. Additional fluid element trajectories have been calculated 
for different forcing amplitudes and in the presence of gravity. They are given in Chen 
(1 99 1). 

6. Concluding remarks 
An extensive experimental study of the dynamics of liquid bridges is presented. This 

investigation is aimed at providing experimental data on the resonance frequency and 
damping rate of capillary bridges and, also, evaluating the prospects of using such data 
to determine the liquid properties. 

A wide range of Reynolds numbers is investigated (14 < Re d 1600) by using three 
different fluids. As expected, the first and second mode resonance frequencies increase 
with aspect ratio. The stronger dependence of the damping coefficient on Reynolds 
number (at lower Reynolds numbers) is confirmed. Only the damping coefficients for 
Re = 14 and 295 are reported. However, based on the calculations by Tsamopoulos et 
al. (1992) no significant decrease in the damping coefficient is expected at Reynolds 
numbers greater than 200. The best fit linear curves of the damping coefficients display 
a more rapid increase in damping with increasing aspect ratio than do their 
counterparts from the linear model. 

The proposed technique for the liquid property determination is based on the 
experimental measurement of either the resonance frequency or the damping rate of 
liquid bridges, and subsequent theoretical calculation of the modified Re that provides 
the same resonance frequency or damping rate. If more than one property is unknown 
and only resonance frequencies are to be measured, bridges with different aspect ratios 
must be tested. As noted in Tsamopoulos et al. (1992), this technique is applicable to 
liquids with low modified Re (Re  < 100). 

The technique is validated by applying it to ethylene glycol with Re = 14. The 
resonance frequencies are determined by measuring the surface amplitude of the liquid 
bridge. Therefore, their accurate determination depends critically on the resolution of 
the amplitude measurement. In the present experiment using a 240 x 192 sensor array 
to record the bridge motion, the maximum amplitude from the static bridge shape 
corresponds to approximately 7 pixels on the monitor. With 1-pixel resolution, 14 % 
error in the amplitude measurement is expected. Based on the experimental 
observations, this gives rise to 3 YO error in the frequency measurement. The frequency 
values computed by the nonlinear method of CT, for the same geometric and physical 
parameters as two selected experimental data sets, are indeed within 3 YO of the mean 
value of those measured experimentally. The resonance frequencies predicted using the 
linear theory of Tsamopoulos et al. (1992) are consistently about 20% above the 
measured values. The linear prediction improves to within approximately 16 % of the 
first mode data as bridge length is increased. It can be concluded that the combination 
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of the experimental determination of the resonance frequency using amplitude 
measurement with a high resolution, and the nonlinear theory can be used to 
accurately determine the liquid properties. 

The experimental results indicate that the damping rate is more sensitive to the 
Reynolds number, and therefore, it is a better parameter for the property 
determination. The damping rate measurements, however, are much more difficult 
since time-resolved measurements of the amplitude are needed. For more viscous 
liquids, where the damping rate is higher, the disturbances damp out at a faster rate. For 
instance, recording the damping of the ethylene glycol bridge at 1000 frames per second 
results in only 3 to 4 measurable peaks in the amplitude. Therefore, damping rate 
measurements at such recording speeds results in large errors in determining the liquid 
properties. Visualization with higher resolutions and faster speeds are needed to 
properly utilize the damping rate data for property measurement. 

Further understanding of the dynamics of liquid bridges is achieved by studying 
their internal flow fields. Visualization of the internal flow fields showed that the tracers 
follow complicated circular and toroidal paths. A single toroidal structure is observed 
at low Reynolds numbers or shorter bridges while a double toroidal structure is 
established at higher Reynolds numbers or longer bridges. The two toroids are of equal 
size for very high Reynolds number but the motion of the top toroid cannot be 
sustained in a more viscous environment and begins to shrink as the Reynolds number 
is decreased. Using the nonlinear theory of CT, fluid elements in low Reynolds number 
bridges are followed in time. The paths and directions of travel of these fluid particles 
agree with the single toroid motion seen in the ethylene glycol bridges. 

This work was partially supported by the Fluid Mechanics Program of NSF under 
grant numbers CTS-9011201 and MSM-8705735. Funds from the later grant 
contributed to the purchase of the EktaPro 1000 motion analysis system. Usage of the 
Cornell National Supercomputer Facilities (CNSF) and the graphics software 
developed by Dr A. Poslinski are gratefully acknowledged. 

R E F E R E N C E S  
BORKAR, A. & TSAMOPOULOS, J. A. 1991 Boundary layer analysis of the dynamics of axisymmetric 

BROWN, R. A. 1988 Theory of transport processes in single crystal growth from the melt. AZChE J.  

CHEN, T.-Y. 1991 Static and dynamic analysis of capillary bridges. PhD thesis, Department of 
Chemical Engineering, State University of New York at Buffalo. 

CHEN, T.-Y. & TSAMOPOULOS, J. A. 1993 Nonlinear dynamics of capillary bridges: theory. J.  Fluid 
Mech. 255, 373409 (referred to herein as CT). 

CHEN, T.-Y., TSAMOPOULO~, J. A. & GOOD, R. J. 1992 Capillary bridges between parallel and non- 
parallel surfaces and their stability. J.  Colloid Interface Sci 151, 49-69. 

FOWLE, A. A., WANG, C. A. & STRONG, P. F. 1979 Experiments on the stability of conical and 
cylindrical liquid columns at low Bond numbers. Arthur D.  Little Co. Ref. C-82435. 

LAPLACE, P. S. 1805 Theory of capillary attractions, supplement to the Tenth Book of Celestial 
Mechnnics (translated and annotated by N. Bowditch, 1839). Reprinted by Chelsea, New York, 
1966. 

MASON, G. 1970 An experimental determination of the stable length of cylindrical liquid bridges. J.  
Colloid Interface Sci. 32, 172-1 76. 

MELROSE, J. C. 1966 Model calculations for capillary condensation. AZChE J.  12, 986994. 
MESEGUER, J. 1983 The breaking of axisymmetric slender liquid bridges. J.  Fluid Mech. 130, 

capillary bridges. Phys. Fluids A 3, 2866-2874. 

34, 881-911. 

123-1 5 1. 



Nonlinear dynamics of capillary bridges : experiments 43 5 

PLATEAU, J. A. F. 1863 Experimental and theoretical researchers on the figures of equilibrium of a 
liquid mass withdrawn from the action of gravity. Translated in Ann. Rep. Smithsonian Znst., pp. 

PREISER, F., SCHWABE, D. & SCHARMANN, A. 1983 Steady and oscillatory thermocapillary 
convection in liquid columns with free cylindrical surface. J.  Fluid Mech. 126, 545-567. 

RAYLEIGH, LORD 1879 On the instability of jets. Proc. Lond. Math. SOC. 10, 4-13. 
RAYLEIGH, LORD 1892 On the stability of cylindrical fluid surfaces. Phil. Mag. 34, 177-180. 
REID, R. C., PRAUSNITZ, J. M. & SHERWOOD, T. K. 1977 The Properties of Gases and Liquids. 

RIVAS, D. & MESEGUER, J. 1984 One-dimensional self-similar solution of the dynamics of 

RUELLAN, F. & WALLET, A. 1950 Trajectoires internes dans un clapotis particl. La Houille Blanche 

SANZ, A. 1985 The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J.  

STOKER, J. J. 1957 Water Waves. Interscience. 
TRINH, E. H., MARSTON, P. L. & ROBEY, J. L. 1988 Acoustic measurement of the surface tension of 

TSAMOPOULOS, J. A., CHEN, T.-Y. & BORKAR, A. 1992 Viscous oscillations of capillary bridges. J.  

YOUNG, T. 1805 Essay on the cohesion of fluids. Phil. Trans. R .  Sac. Lond. A 306, 347-370. 
ZASADZINSKI, J. N., SWEENEY, J. B., DAVIS, H. T. & SCRIVEN, L. E. 1987 Finite element calculation 

of fluid menisci and thin-films in model porous media. J.  Colloid Interface Sci. 119, 108-1 16. 

207-285. 

McGraw-Hill. 

axisymmetric slender liquid bridges. J .  Fluid Mech. 138, 417-429. 

5. 

Fluid Mech. 156, 101-140. 

levitated drops. J.  Colloid Interface Sci. 124, 95-103. 

Fluid Mech. 235, 579-609. 




